REVIEW: PRODUKSI LIMONENE MELALUI REKAYASA JALUR PENTOSA FOSFAT MENGGUNAKAN CYANOBACTERIUM Synechocystis sp. PCC 6803

Authors

  • Alda Wydia Prihartini Azar a:1:{s:5:"en_US";s:29:"Jenderal Soedirman University";}
  • Hasna Dyah Kusumardani Universitas Jenderal Soedirman
  • Haris Maulani Universitas Jenderal Soedirman

DOI:

https://doi.org/10.30605/biogenerasi.v10i2.5344

Keywords:

metabolic engineering, isoprene, limonene synthase, citrus, microorganisms

Abstract

Limonene, a terpenoid compound found in various plants such as oranges, lemons, and mint, has numerous applications in different industrial fields, including as a fragrance, flavoring agent, and biofuel. Conventional limonene production relies on agricultural outputs vulnerable to fluctuations caused by diseases or climate change. Therefore, metabolic engineering using microorganisms offers an interesting alternative for more efficient and sustainable limonene production. This review article aims to summarize the procedures for limonene production through the modification of the pentose phosphate (PP) and methylerythritol 4-phosphate (MEP) biosynthetic pathways in the cyanobacterium Synechocystis sp. PCC 6803 to produce limonene. Limonene synthase (lims) obtained from C. limon and M. spicata plants was cloned and transformed into cyanobacteria to enhance limonene production. Experimental results showed that genes associated with the limonene biosynthesis pathway, including ribose 5-phosphate isomerase (rpi), ribulose 5-phosphate 3-epimerase (rpe), and geranyl diphosphate synthase (gpps), were successfully expressed in Synechocystis. This study demonstrates that Synechocystis can be an efficient microbial system for limonene and other isoprene compound production, offering a more stable and environmentally friendly alternative than agricultural-based production.

Downloads

Download data is not yet available.

References

Alonso-Gutierrez, J., Chan, R., Batth, T. S., Adams, P. D., Keasling, J. D., Petzold, C. J., & Lee, T. S. (2013). Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metabolic Engineering, 19, 33–41. https://doi.org/10.1016/j.ymben.2013.05.004
Angermayr, S. A., Rovira, A. G., & Hellingwerf, K. J. (2015). Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends in Biotechnology, 33(6), 352–361. https://doi.org/10.1016/j.tibtech.2015.03.009
Behrendorff, J. B., Vickers, C. E., Chrysanthopoulos, P., & Nielsen, L. K. (2013). 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis. Microbial Cell Factories, 12(1). https://doi.org/10.1186/1475-2859-12-76
Bentley, F. K., García-Cerdán, J. G., and Chen, H.-C. (2013). Paradigm of monoterpene (β-phellandrene) hydrocarbons production via photosynthesis in cyanobacteria. Bioenerg. Res. 6, 917–929. https://10.1007/s12155-013-9325-4
Bentley, F. K., and Melis, A. (2012). Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol. Bioeng. 109, 100–109. https://doi.10.1002/bit.23298
Burnham, Paul M. (2017). Limonene - Molecule of the Month March 2008 [Archived version]. figshare. Journal contribution. https://doi.org/10.6084/m9.figshare.5427154.v1
Chuck, C. J. &. D. J. (2014). The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. ideas.repec.org. https://ideas.repec.org/a/eee/appene/v118y2014icp83-91.html
Ciriminna, R., Lomelí-Rodríguez, M., Carà, P. D., Lopez-Sanchez, J. A., & Pagliaro, M. (2014). Limonene: a versatile chemical of the bioeconomy. https://www.semanticscholar.org/paper/Limonene%3A-a-versatile-chemical-of-the-bioeconomy.-Ciriminna-Lomel%C3%AD-Rodr%C3%ADguez/54a7ce45ddfe78844ff0f50e6d957680bde6f6a7
Davies, F. K., Work, V. H., Beliaev, A. S., & Posewitz, M. C. (2014). Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002. Frontiers in Bioengineering and Biotechnology, 2. https://doi.org/10.3389/fbioe.2014.00021
Erasto, P., & Viljoen, A. M. (2008). Limonene - A review: Biosynthetic, Ecological and pharmacological Relevance. Natural Product Communications, 3(7). https://doi.org/10.1177/1934578x0800300728
Ershov, Y. V., Gantt, R. R., Cunningham, F. X., & Gantt, E. (2002). Isoprenoid Biosynthesis in Synechocystis sp. Strain PCC6803 Is Stimulated by Compounds of the Pentose Phosphate Cycle but Not by Pyruvate or Deoxyxylulose-5-Phosphate. Journal of Bacteriology, 184(18), 5045–5051. https://doi.org/10.1128/jb.184.18.5045-5051.2002
Flamini, G., Tebano, M., & Cioni, P. L. (2007). Volatiles emission patterns of different plant organs and pollen of Citrus limon. Analytica Chimica Acta, 589(1), 120–124. https://doi.org/10.1016/j.aca.2007.02.053
Halfmann, C., Gu, L., & Zhou, R. (2014). Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO2and H2O. Green Chemistry, 16(6), 3175–3185. https://doi.org/10.1039/c3gc42591f
Hodges, A. W., Spreen, T. H. (2012). Economic impacts of Citrus greening (HLB) in Florida, 2006/07–2010/11. Institute of Food and Agricultural Sciences, University of Florida, Document No. FE903
Jahandideh, A., Johnson, T. J., Esmaeili, N., Johnson, M. D., Richardson, J. W., Muthukumarappan, K., Anderson, G. A., Halfmann, C., Zhou, R., & Gibbons, W. R. (2017). Life cycle analysis of a large-scale limonene production facility utilizing filamentous N2-fixing cyanobacteria. Algal Research, 23, 1–11. https://doi.org/10.1016/j.algal.2017.01.001
Johnson, T. J., Jahandideh, A., Johnson, M. D., Fields, K. H., Richardson, J. W., Muthukumarappan, K., Cao, Y., Gu, Z., Halfmann, C., Zhou, R., & Gibbons, W. R. (2016). Producing next-generation biofuels from filamentous cyanobacteria: An economic feasibility analysis. Algal Research, 20, 218–228. https://doi.org/10.1016/j.algal.2016.10.020
Jongedijk, E., Cankar, K., Buchhaupt, M., Schrader, J., Bouwmeester, H., & Beekwilder, J. (2016). Biotechnological production of limonene in microorganisms. Applied Microbiology and Biotechnology, 100(7), 2927–2938. https://doi.org/10.1007/s00253-016-7337-7
Khanijou, J. K., Hee, Y. T., Scipion, C. P. M., Chen, X., & Selvarajoo, K. (2024). Systems biology approach for enhancing limonene yield by re-engineering Escherichia coli. Npj Systems Biology and Applications, 10(1). https://doi.org/10.1038/s41540-024-00440-7
Kong, X., Wu, Y., Yu, W., Liu, Y., Li, J., Du, G., Lv, X., & Liu, L. (2023). Efficient Synthesis of Limonene in Saccharomyces cerevisiae Using Combinatorial Metabolic Engineering Strategies. Journal of Agricultural and Food Chemistry, 71(20), 7752–7764. https://doi.org/10.1021/acs.jafc.3c02076
Kiyota, H., Okuda, Y., Ito, M., Hirai, M. Y., & Ikeuchi, M. (2014). Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. Journal of Biotechnology, 185, 1–7. https://doi.org/10.1016/j.jbiotec.2014.05.025
Lindberg, P., Park, S., and Melis, A. (2010). Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12, 70–79. https://doi.10.1016/j.ymben.2009.10.001
Lin, P., Saha, R., Zhang, F., & Pakrasi, H. B. (2017). Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-17831-y
Muraleedharan, A., Sha, K., Kumar, S., Usha, G., Karthikeyan, P., Kumar, C. P. S., & Joshi, J. (2021). Response of Orchid Cut Flowers as Affected by Floral Preservatives on The Postharvest Quality. Plant Archives, 21(Suppliment-1), 1608–1620. Https://doi.org/10.51470/plantarchives.2021.v21.s1.254
Shahbazi, Y., & Shavisi, N. (2021). Chapter 4 - Limonene. In M. Mushtaq & F. Anwar (Eds.), A Centum of Valuable Plant Bioactives (pp. 77–91). Academic Press. https://doi.org/10.1016/C2019-0-04618-3
Soković, M., Glamočlija, J., Marin, P. D., Brkić, D., & Van Griensven, L. J. L. D. (2010). Antibacterial effects of the essential oils of commonly consumed medicinal herbs Using an in vitro model. Molecules, 15(11), 7532–7546. https://doi.org/10.3390/molecules15117532
Tracy, N. I., Chen, D., Crunkleton, D. W. & Price, G. L. (2009). Hydrogenated monoterpenes as diesel fuel additives. Fuel, 88 (11): 2238–2240. https://doi.org/10.1016/j.fuel.2009.02.002
Tranchida, P. Q., Zoccali, M., Bonaccorsi, I., Dugo, P., Mondello, L., & Dugo, G. (2013). The off-line combination of high performance liquid chromatography and comprehensive two-dimensional gas chromatography–mass spectrometry: A powerful approach for highly detailed essential oil analysis. Journal of Chromatography A, 1305, 276–284. https://doi.org/10.1016/j.chroma.2013.07.042
Zhang, X., Liu, X., Meng, Y., Zhang, L., Qiao, J., & Zhao, G. (2021). Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production. Biochemical Engineering Journal, 176, 108155. https://doi.org/10.1016/j.bej.2021.108155

Downloads

Published

2025-02-01

How to Cite

Azar, A. W. P., Hasna Dyah Kusumardani, & Haris Maulani. (2025). REVIEW: PRODUKSI LIMONENE MELALUI REKAYASA JALUR PENTOSA FOSFAT MENGGUNAKAN CYANOBACTERIUM Synechocystis sp. PCC 6803 . Jurnal Biogenerasi, 10(2), 866–873. https://doi.org/10.30605/biogenerasi.v10i2.5344