ANALYSIS OF ACTINOMYCETES ABUNDANCE IN THE RHIZOSPHERE OF MANGROVE ECOSYSTEMS IN SEKOTONG AS A POTENTIAL SOURCE OF BENEFICIAL MICROBES

Authors

  • Rubiyatna Sakaroni Universitas Mataram
  • Baiq Isti Hijriani Universitas Mataram
  • Wirdullutfi Universitas Mataram

DOI:

https://doi.org/10.30605/biogenerasi.v10i3.6701

Keywords:

Actinomycetes, rhizosphere, mangrove, sekotong subdistrict

Abstract

The rhizosphere of mangroves is a microhabitat rich in root exudates and organic matter, making it an ideal environment for the growth of Actinomycetes. This study aims to analyze the abundance of Actinomycetes in the mangrove rhizosphere at three different locations in Sekotong District, West Lombok: Bagek Kembar, Tanjung Batu, and Buwun Mas. Sampling was conducted using purposive sampling in the dominant root zone at a depth of ±20 cm. Actinomycetes isolation was performed using the surface plate method on SCA medium supplemented with nystatin as an antifungal agent. The results showed that the highest abundance was found in the rhizosphere of Rhizophora mucronata at Bagek Kembar with 4.6 × 10⁵ CFU/g, while the lowest was in Avicennia marina at Tanjung Batu with 1 × 10⁵ CFU/g. In general, Rhizophora mucronata showed higher abundance than Avicennia marina in all locations. This difference was influenced by root exudate characteristics, root system structure, and soil physicochemical conditions such as aeration and organic matter content. This study concludes that the rhizosphere of Rhizophora mucronata in Bagek Kembar is a more supportive habitat for the growth of Actinomycetes. This finding serves as an important basis for further exploration of Actinomycetes isolates from mangroves as potential sources of biocontrol agents and antimicrobial compound producers.

Downloads

Download data is not yet available.

References

Abdelrahman, O., Yagi, S., Siddig, M., Hussein, A., Germanier, F., De Vrieze, M., L’Haridon, F., & Weisskopf, L. (2022). Evaluating the Antagonistic Potential of Actinomycetes Strains Isolated From Sudan’s Soils Against Phytophthora infestans. Frontiers in Microbiology, 13. https://doi.org/https://doi.org/10.3389/fmicb.2022.827824. DOI: https://doi.org/10.3389/fmicb.2022.827824

Abidin, Z., Malek, N., Zin, N., & Chowdhury, A. (2020). Rare Actinomycetes from Kuantan Mangrove Foest Sediment. Journal CleanWAS. https://doi.org/https://doi.org/10.26480/jcleanwas.02.2020.79.83. DOI: https://doi.org/10.26480/jcleanwas.02.2020.79.83

Baskaran, V., Mahalakshmi, A., & Prabavathy, V. (2023). Mangroves: A hotspot for novel bacterial and archaeal diversity. Rhizosphere, 27. https://doi.org/https://doi.org/10.1016/j.rhisph.2023.100748 DOI: https://doi.org/10.1016/j.rhisph.2023.100748

Clark, F. (2016). Agar‐Plate Method for Total Microbial Count. 1460–1466. https://doi.org/https://doi.org/10.2134/AGRONMONOGR9.2.C48 DOI: https://doi.org/10.2134/agronmonogr9.2.c48

Dalengkade, M. N. (2020). Fluktuasi Temporal Kelembaban Udara Di Dalam Dan Luar Ekosistem Mangrove. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(2), 159–166. https://doi.org/10.30598/barekengvol14iss2pp159-166 DOI: https://doi.org/10.30598/barekengvol14iss2pp159-166

Dana, P. T. (2020). Sampling Methods in Research Design. Academic Press.

Dhungana, I., Kantar, M., & Nguyen, N. (2022). Root exudate composition from different plant species influences the growth of rhizosphere bacteria. Rhizosphere. https://doi.org/https://doi.org/10.1016/j.rhisph.2022.100645. DOI: https://doi.org/10.1016/j.rhisph.2022.100645

Elshafie, H., & Camele, I. (2022). Rhizospheric Actinomycetes Revealed Antifungal and Plant-Growth-Promoting Activities under Controlled Environment. Plants, 11. https://doi.org/https://doi.org/10.3390/plants11141872. DOI: https://doi.org/10.3390/plants11141872

Groth, I., & Saiz-Jimenez, C. (1999). Actinomycetes in Hypogean Environments. Geomicrobiology Journal, 16, 1–8. https://doi.org/https://doi.org/10.1080/014904599270703. DOI: https://doi.org/10.1080/014904599270703

Hastuti, E., Izzati, M., & Prihastanti, E. (2024). Bioconcentration Factor of Avicennia marina (Forsk.) and Rhizophora mucronata (Lamk.) Inhabiting Coastal Area of Semarang City on Cadmium. Jurnal Biota. https://doi.org/https://doi.org/10.19109/biota.v11i1.22987. DOI: https://doi.org/10.19109/biota.v11i1.22987

Hidayat, X. Z. A., Arifin, R. D. S. L., & Syukur, A. (2024). Vegetation Structure and Diversity of Mangrove Species in The Bagek Kembar Natural Forest , Sekotong , West Lombok. Jurnal Biologi Tropis, 24(1), 853–862.

Kavitha, K., Bharathi, S., Kumaran, S., Ponmozhi, M., & Suresh, G. (2023). Exploration of phyto-beneficial traits of halophilic rhizobacteria isolated from the mangrove halophyte Avicennia marina. Archives of Phytopathology and Plant Protection, 56, 1450–1466. https://doi.org/https://doi.org/10.1080/03235408.2023.2291844 DOI: https://doi.org/10.1080/03235408.2023.2291844

Kumar, R., Jadeja, V., Shree, M., & Virani, N. (2016). Isolation of Actinomycetes: A Complete Approach. International Journal of Current Microbiology and Applied Sciences, 5, 606–618. https://doi.org/https://doi.org/10.20546/IJCMAS.2016.505.062. DOI: https://doi.org/10.20546/ijcmas.2016.505.062

Kumari, A., & Rao, K. (2023). Role of Actinomycetes from different habitats as a potential source for the production of novel bioactive compounds: A Review. Research Journal of Biotechnology. https://doi.org/https://doi.org/10.25303/1803rjbt1310138. DOI: https://doi.org/10.25303/1803rjbt1310138

Li, Q., Lyu, M., Wu, Y., Zhang, L., Wang, S., Wu, X., Wang, B., & Kang, X. (2024). The Screening and Identification of a Dextranase-Secreting Marine Actinmycete Saccharomonospora sp. K1 and Study of Its Enzymatic Characteristics. Marine Drugs, 22. https://doi.org/https://doi.org/10.3390/md22020069. DOI: https://doi.org/10.3390/md22020069

Maulidah, N., & Zakiyah, U. (2023). Analisis Status Kesehatan Hutan Mangrove di Ekowisata Mangrove Bagek Kembar, Kabupaten Lombok Barat Menggunakan Data Citra Landsat 8 dan Software MonMang 2.0 [Universitas Brawijaya]. https://repository.ub.ac.id/id/eprint/200767/

McKee, K. (1996). Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia. Tree Physiology, 16(11_12), 883–889. https://doi.org/https://doi.org/10.1093/TREEPHYS/16.11-12.883. DOI: https://doi.org/10.1093/treephys/16.11-12.883

Naidoo, G., & Naidoo, K. (2018). Uptake and accumulation of polycyclic aromatic hydrocarbons in the mangroves Avicennia marina and Rhizophora mucronata. Environmental Science and Pollution Research, 25, 28875–28883. https://doi.org/https://doi.org/10.1007/s11356-018-2934-x. DOI: https://doi.org/10.1007/s11356-018-2934-x

Nauanova, A., Aidarkulova, R., Anuarbekova, S., Baimbetova, E., Kazangapova, N., Bekenova, S., & Yerpasheva, D. (2018). Ecology of Actinomycetes in Different Soil Ecosystems Common in North Kazakhstan: Assessment and Genotyping. Ekoloji, 27, 1841-1856.

Nazari, M., Machado, B., Marchezi, G., Crestani, L., Ferrari, V., Colla, L., & Piccin, J. (2022). Use of soil Actinomycetes for pharmaceutical, food, agricultural, and environmental purposes. 3 Biotech, 12, 1–26. https://doi.org/https://doi.org/10.1007/s13205-022-03307-y DOI: https://doi.org/10.1007/s13205-022-03307-y

Palit, K., Rath, S., Chatterjee, S., & Das, S. (2022). Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. Environmental Science and Pollution Research, 29, 32467-32512. https://doi.org/https://doi.org/10.1007/s11356-022-19048-7 DOI: https://doi.org/10.1007/s11356-022-19048-7

Pascale, A., Proietti, S., Pantelides, I., & Stringlis, I. (2020). Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 10. https://doi.org/https://doi.org/10.3389/fpls.2019.01741. DOI: https://doi.org/10.3389/fpls.2019.01741

Qudraty, H. N., Japa, L., & Suyantri, E. (2023). Analysis of Mangrove Community in The Bagek Kembar Essential Ecosystem Area, West Lombok. Jurnal Biologi Tropis, 23(1), 39–46. https://doi.org/10.29303/jbt.v23i1.5799 DOI: https://doi.org/10.29303/jbt.v23i1.5799

Rintelen, K., Arida, E., & Häuser, C. (2017). A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Research Ideas and Outcomes, 3. https://doi.org/https://doi.org/10.3897/RIO.3.E20860 DOI: https://doi.org/10.3897/rio.3.e20860

Sakaroni, R., Listantia, N., & Ningthias, D. (2024). Bibliometric Insights on Mangrove Actinobacteria’s Secondary Metabolites as Antibiotics Using VOSviewer. Jurnal Biologi Tropis. https://doi.org/https://doi.org/10.29303/jbt.v24i1b.8147 DOI: https://doi.org/10.29303/jbt.v24i1b.8147

Sengupta, S., Pramanik, A., Ghosh, A., & Bhattacharyya, M. (2015). Antimicrobial activities of Actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiology, 1–16. https://doi.org/10.1186/s12866-015-0495-4 DOI: https://doi.org/10.1186/s12866-015-0495-4

Sharma, C., Chaturvedi, P., Mathur, P., Mathur, N., & Bhatnagar, P. (2022). Halophilic and Halotolerant Actinomycetes of Sambhar Salt Lake, India: Screening and Optimization of Cellulolytic Activity. Journal of Pure and Applied Microbiology. https://doi.org/https://doi.org/10.22207/jpam.16.3.24. DOI: https://doi.org/10.22207/JPAM.16.3.24

Smyth, K., & Elliott, M. (2019). Effects of changing salinity on the ecology of the marine environment’, in Martin Solan, and Nia Whiteley (eds), Stressors in the Marine Environment: Physiological and ecological responses; societal implications. Oxford Academic. https://doi.org/https://doi.org/10.1093/acprof:oso/9780198718826.003.0009 DOI: https://doi.org/10.1093/acprof:oso/9780198718826.003.0009

Valenciana, R. L., Surya Indrawan, G., & Pratama Atmaja, P. S. (2025). Hubungan Kerapatan Mangrove dengan Kelimpahan Gastropoda di Teluk Gilimanuk, Bali. Journal of Marine Research and Technology, 8(1), 78. https://doi.org/10.24843/jmrt.2025.v08.i01.p11 DOI: https://doi.org/10.24843/JMRT.2025.v08.i01.p11

Waldrop, M., Holloway, J., Smith, D., Goldhaber, M., Drenovsky, R., Scow, K., Dick, R., Howard, D., Wylie, B., & Grace, J. (2017). The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale. Ecology, 98(7), 1957–1967. https://doi.org/https://doi.org/10.1002/ecy.1883. DOI: https://doi.org/10.1002/ecy.1883

Westhoff, S., Kloosterman, A., Van Hoesel, S., Van Wezel, G., & Rozen, D. (2021). Competition Sensing Changes Antibiotic Production in Streptomyces. MBio, 12. https://doi.org/https://doi.org/10.1128/mBio.02729-20 DOI: https://doi.org/10.1128/mBio.02729-20

Williams, G., Miller, R., & Deng, S. (2025). Dynamic relationships between microbial community, enzyme activity, and soil properties across global ecosystems. Applied Soil Ecology. https://doi.org/https://doi.org/10.1016/j.apsoil.2024.105843. DOI: https://doi.org/10.2139/ssrn.4898846

Ye, J., Zou, R., Zhou, D., & Deng, X. (2023). Insights into the phylogenetic diversity , biological activities , and biosynthetic potential of mangrove rhizosphere Actinobacteria from Hainan Island. Frontiers in Microbiology, may. https://doi.org/DOI 10.3389/fmicb.2023.1157601 OPEN DOI: https://doi.org/10.3389/fmicb.2023.1157601

Zhao, M., Zhao, J., Yuan, J., Hale, L., Wen, T., Huang, Q., Vivanco, J., Zhou, J., Kowalchuk, G., & Shen, Q. (2020). Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell & Environment. https://doi.org/https://doi.org/10.1111/pce.13928. DOI: https://doi.org/10.1111/pce.13928

Downloads

Published

2025-09-08

How to Cite

Sakaroni, R., Baiq Isti Hijriani, & Wirdullutfi. (2025). ANALYSIS OF ACTINOMYCETES ABUNDANCE IN THE RHIZOSPHERE OF MANGROVE ECOSYSTEMS IN SEKOTONG AS A POTENTIAL SOURCE OF BENEFICIAL MICROBES. Jurnal Biogenerasi, 10(3), 1817–1825. https://doi.org/10.30605/biogenerasi.v10i3.6701