Analysis Digital Track of Hate Speech on Instagram Using a Forensic Linguistic

https://doi.org/10.30605/onoma.v10i4.4439

Authors

  • Nadia Novernia Cristy Katuuk Universitas Sam Ratulangi
  • Isnawaty Lydia Wantasen Universitas Sam Ratulangi
  • Djeinnie Imbang Universitas Sam Ratulangi

Keywords:

Hate Speech, Instagram, Forensic  Linguistic

Abstract

This research investigates the phenomenon of hate speech on social media with data obtained from comments on Instagram posts by Gibran Rakabuming Raka, a public figure and politician who is currently the elected vice president. The study employs a qualitative descriptive method with the observation method and utilizes forensic linguistic theory in investigating hate speech comments. It analyzes five examples of hate speech found in the comment section of his private Instagram account @gibran_rakabuming. The data includes five forms of hate speech on Instagram, covering (1) insulting hate speech, (2) provocative hate speech, (3) inciting hate speech, (4) spreading false news hate speech, and (5) defamation hate speech. These findings underscore the importance of awareness in commenting on social media to avoid hate speech and the need for effective prevention measures to mitigate its negative impact on social media platforms. It highlights the importance of awareness and collective efforts to create a safer and more inclusive digital environment. This research contributes to understanding the dynamics of hate speech in the realm of social media.

Downloads

Download data is not yet available.

References

Agustin, D. (2020). Cuitan Mengandung Ujaran Kebencian di Media Sosial Twitter: Kajian Linguistik Forensik (Doctoral dissertation, UNIVERSITAS AIRLANGGA).

Anam, M. C., & Hafiz, M. (2015). Surat Edaran Kapolri Tentang Penanganan Ujaran Kebencian (Hate Speech) dalam Kerangka Hak Asasi Manusia. Jurnal Keamanan DOI: https://doi.org/10.31599/jkn.v1i3.30

Nasional, 1(3), 341-364.

Burhanuddin, f. (2022). Analisis Linguistik Forensik Pencemaran Nama Baik di Media Sosial: Forensic Linguistic Analysis of Defamation in Social Media.(Doctoral

Dissertation, Universitas Hasanuddin).

Kamus Besar Bahasa Indonesia (2016-2020) Edisi Kelima.

Nurfadzilah, V., & Sudarmaji, S. (2022). Pengembangan E-Modul Berbasis MediaSosial Instagram Pada Pembelajaran Gramatik Bahasa Jerman Sebagai Sumber DOI: https://doi.org/10.33369/diksa.v8i1.22661

Belajar Mandiri. Diksa: Pendidikan Bahasa dan Sastra Indonesia, 8(1), 103-115.

Minto, D. (2023). Analisis Strategi dan Tindak Tutur Direktif Masyarakat di Pesisir Pantai Dalam Komunikasi. Diksa: Pendidikan Bahasa dan Sastra Indonesia, 9(2), 88-98. DOI: https://doi.org/10.33369/diksa.v9i2.27786

Muthia, R. (2015). Kajian Pragmatik terhadap Tuturan Penghinaan dan Pencemaran Nama Baik dalam Bahasa Indonesia. Prosiding Prasasti, 329-334.

Suparman, S. (2024). Konteks Budaya Perkawinan Masyarakat Bugis Luwu (Kajian Antropolinguistik). DEIKTIS: Jurnal Pendidikan Bahasa dan Sastra, 4(3), 233-238. DOI: https://doi.org/10.53769/deiktis.v3i4.559

Rismayanti. 2014. Analisis pragmatik atas laporan Pencemaran nama baik (telaah linguistik forensik laporan polisi ahmad dhani terhadap farhat abbas).

Universitas Pendidikan Indonesia.

Santoso, D. (2020). A Forensic Linguistics Study of Ahok’s Statements in Psychological Variables Use Computerized Text Analysis.

Sarifuddin, s. (2021). Tindak Tutur Provokatif Pada Media Sosial: Analisis Linguistik Forensik (Doctoral Dissertation, Universitas Hasanuddin).

Sholihatin, Endang. 2019 Linguistik Forensik dan Kejahatan. Berbahasa. Yogyakarta: Pustaka Pelajar.

Sudaryanto,1993. Metode dan Aneka Teknik Analisis Bahasa: Pengantar Penelitian Wahana Kebudayaan Secara Linguistik. Yogyakarta: Duta Wacana University Press.

Published

2024-09-08

How to Cite

Katuuk, N. N. C., Wantasen, I. L., & Imbang, D. (2024). Analysis Digital Track of Hate Speech on Instagram Using a Forensic Linguistic . Jurnal Onoma: Pendidikan, Bahasa, Dan Sastra, 10(4), 3847–3854. https://doi.org/10.30605/onoma.v10i4.4439

Issue

Section

Articles

Categories

Most read articles by the same author(s)