KARAKTERISTIK IDEAL PADA SEMINEAR-RING DAN SEMINEAR-RING SEDERHANA

Authors

  • Meryta Febrilian Fatimah Universitas Sulawesi Barat
  • Ahmad Ansar Program Studi Matematika, FMIPA, Universitas Sulawesi Barat

DOI:

https://doi.org/10.30605/proximal.v5i1.1488

Keywords:

seminear-ring, ideal prima, ideal semiprima, seminear-ring sederhana

Abstract

Diberikan seminear-ring $S$. Seminear-ring merupakan hasil generalisasi dari semiring dan near-ring. Ideal pada seminear-ring $S$ didefinisikan dengan cara yang sama seperti ideal pada semiring. Pada seminear-ring $S$ terdapat beberapa jenis ideal yaitu ideal prima, ideal semiprima, ideal prima lengkap dan ideal semiprima lengkap. Ideal kiri (kanan) $Sa(aS)=S$ berakibat  seminear-ring sederhana kiri (kanan). Jika $(Sa)S=S$ maka $S$ merupakan seminear-ring sederhana. Konsep ideal pada seminear-ring akan diperkenalkan lebih khusus pada penelitian ini.

Downloads

Download data is not yet available.

References

Atani, R. E. (2013). Generalizations of Prime Ideals of Semirings. Azerbaijan Journal of Mathematics, 76-83.

Baek, S. H., & etc. (2014). Insertion-Of-Ideal-Factors-Property. East Asian Math Journal, 617-623.

Golan, J. S. (2013). Semirings and Affine Equations over Them: Theory and Applications. Amsterdam: Kluwer Academic Publishers.

Hussain, F., Tahir, M., Abdullah, S., & Sadiq, N. (2016). Quotient Seminear-Rings. Indian Journal of Science and Technology, 1-7.

Malik, D., Mordeson, J. S., & Sen, M. (1997). Fundamentals of Abstract Algebra. United States of America: The Mc Graw-Hill Companies, Inc.

Perumal, R., Arulprakasam, R., & Radhakrishnan, M. (2018). A note on Ideals in Seminear-Rings. National Conference on Mathematical Techniques and Its Applications, 1-6.

Pilz, G. (1983). Near-Rings. Amsterdam: North-Holland Publishing Company.

Downloads

Published

2022-02-10

How to Cite

Meryta Febrilian Fatimah, & Ahmad Ansar. (2022). KARAKTERISTIK IDEAL PADA SEMINEAR-RING DAN SEMINEAR-RING SEDERHANA. Proximal: Jurnal Penelitian Matematika Dan Pendidikan Matematika, 5(1), 38–48. https://doi.org/10.30605/proximal.v5i1.1488