Kekonvergenan Metode Adomian Baru pada Persamaan Integral Volterrra Nonlinear Jenis Kedua
DOI:
https://doi.org/10.30605/proximal.v7i1.3397Keywords:
Volterra integral equation, convergence, nonlinearAbstract
Banyak permasalahan di dunia yang dapat dibuat menjadi model matematika. Persamaan integral merupakan persamaan yang sering dijumpai Persamaan integral yang akan dibahas merupakan persamaan integral Volterra nonlinear tipe kedua. Persamaan integral Volterra nonlinear tiap kedua adalah persamaan yang fungsi yang tidak diketahui muncul di dalam dan di luar tanda integral dan batas integrasinya adalah konstanta dan variabel yang fungsinya tidak diketahui di dalam tanda integral adalah fungsi nonlinear. Metode yang umum digunakan untuk menyelesaikan persamaan integral Volterra nonlinear tipe kedua adalah metode dekomposisi Adomian. Untuk itu perlu dibahas singularitas dan konvergensi solusi serta estimasi error pada metode dekomposisi Adomian.Downloads
References
Adomian, G.,. (2000). Solving Frontier Problems of Physics : The Decomposition Method. Kluwer – Academic Press. Boston.
Aryati, L. (2011). Pengantar Persamaan Diferensial Parsial. Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Gadjah Mada.
Atkinson, K. (2005). Theoretical Numerical Analysis. Third Ed. Springer, New York.
Bartle, R.G.,& Sherbet, D.R. (2010). Introduction to Real Analysis. Fourth Edition. John Wiley and Sons,Inc. Urbana.
El-Kalla, I.L. (2005). Convergence of the Adomian Method to a Class of Nonlinear Integral Equations. Applied Mathematics Letters. No. 21, 372-376.
El-Kalla, I.L. (2005). Error Analysis of Adomian Series Solution to a Class of Nonlinear Differential Equations. Applied Mathematics E- Notes. No. 7, 214 -221.
Hochstadt, H.,.(1973). Integral Equations. Wiley, New York.
Polyanin, A.D.,& Manzhirov, A.V.(2008). Handbook of Integral Equations. Second Edition. Chapman Hall/CRC. London.
Ross, S.L.(2010). Diferential Equation Third ed. John Wiley and Sons. New Delhi.
Waz-waz,I.L.(2011). Linear and Nonlinear Integral Equations. Higher Education Press. Beijing.
Downloads
Published
How to Cite
Issue
Section
License
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
License and Copyright Agreement
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.