Exploring The Future of Health Through The SELR Mathematical Model with Time Delay on The Risk of Diabetes Among Mathematics Students of FMIPA UNM Due to Unhealthy Lifestyles

Authors

  • Muhammad Abdy Universitas Negeri Makassar
  • Muhammad Isbar Pratama Jurusan Matematika, Fakultas MIPA, Universitas Negeri Makassar
  • Syafruddin Side Jurusan Matematika, Fakultas MIPA, Universitas Negeri Makassar
  • Ilham Minggi Jurusan Matematika, Fakultas MIPA, Universitas Negeri Makassar
  • Andi Muh. Ridho Yusuf S.A.P. Universitas Negeri Makassar

DOI:

https://doi.org/10.30605/proximal.v8i1.4513

Keywords:

Diabetes, SELR Model, Equilibrium Point, Basic Reproduction Number

Abstract

This study aims to build a SELR model with a time delay in diabetes cases, analyze the model, and conduct simulations to predict the incidence of diabetes. This study is a combination of theoretical and application studies. The analysis of the SELR model with a time delay is focused on diabetes cases, while the simulation is carried out using Maple Software. The study population was active students of FMIPA UNM, with a sample size of 1,000 students obtained using the Slovin technique. This study produces a mathematical model of SELR with a time delay for diabetes cases represented as a system of differential equations. Model analysis shows the existence of an equilibrium point free from diabetes cases and a stable endemic equilibrium point. In addition, the results of this study found the basic reproduction number (R₀) for cases without a solution of 25.97333855, which means that one individual can affect 25-26 people in the FMIPA UNM environment. However, if the solution is applied, the R₀ value decreases to 0.7502918529, indicating that there is no psychological spread, where each individual does not affect other individuals.

Downloads

Download data is not yet available.

References

Abdy, M., Side, S., Annas, S., Nur, W., & Sanusi, W. (2021). An SIR epidemic model for COVID-19 spread with fuzzy parameter: The case of Indonesia. Advances in Difference Equations, 2021(1), 1-17.

Anisa, N., & Ramadan, Z. H. (2021). Peran kepala sekolah dan guru dalam menumbuhkan perilaku hidup sehat pada siswa sekolah dasar. Basicedu, 5(4), 2263-2269. https://jbasic.org/index.php/basicedu/article/view/1196

Annas, S., Pratama, M. I., Rifandi, M., Sanusi, W., & Side, S. (2020). Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos, Solitons & Fractals, 139, 110072. https://doi.org/10.1016/j.chaos.2020.110072

Anwar, A., Syam, R., Pratama, M. I., & Side, S. (2021). SEIRS model analysis for online game addiction problem of mathematics students. Journal of Physics: Conference Series, 1918(4), 042024. https://doi.org/10.1088/1742-6596/1918/4/042024

Asri, M., Sidjara, S., Sanusi, W., Side, S., & Pratama, M. I. (2021). Analysis and solution of the SEIRS model for rubella transmission with vaccination effect using Runge-Kutta method. Journal of Physics: Conference Series, 1899(1), 012090. https://doi.org/10.1088/1742-6596/1899/1/012090

Bahtiar, H., & Ariyanti, M. (2022). Relationship of family social support with emotional stress in people with diabetes mellitus. Jurnal Masyarakat dan Kesehatan, 5(1), 57-63. http://e-journal.sari-mutiara.ac.id/index.php/NERS/article/view/2194

Derouich, M., Boutayeb, A., & Twizell, E. H. (2003). A model of dengue fever. BioMedical Engineering OnLine, 2(1), 4. https://doi.org/10.1186/1475-925X-2-4

Etbaigha, F., Willms, A. R., & Poljak, Z. (2018). An SEIR model of influenza A virus infection and reinfection within a farrow-to-finish swine farm. PLoS ONE, 13(9), e0202493. https://doi.org/10.1371/journal.pone.0202493

Hsu, C. C., Hwang, J. S., Hsu, Y. H., Wang, C. J., & Lee, Y. S. (2021). Effects of metabolic health and lifestyle factors on incident diabetes: A prospective study in a Taiwanese population. Journal of Diabetes Investigation, 12(4), 605-613. https://doi.org/10.1111/jdi.13487

Kumar, R., & Gupta, A. (2021). Mathematical modeling and simulation of type 2 diabetes: A review. Journal of Medical Systems, 45(4), 44. https://doi.org/10.1007/s10916-021-01716-0

Lau, M. K., Cao, J., & Lee, H. C. (2021). A mathematical model of type 2 diabetes with hyperbolic insulin secretion function. Journal of Theoretical Biology, 523, 110716. https://doi.org/10.1016/j.jtbi.2021.110716

Maryam, H., Abdy, M., Alimuddin, & Side, S. (2021). SEIAS-SEI model on asymptomatic and super infection malaria with imperfect vaccination. Journal of Physics: Conference Series, 1918(4), 042028. https://doi.org/10.1088/1742-6596/1918/4/042028

Noorani, M. S. M., & Side, S. S. (2012). SEIR model for transmission of dengue fever in Selangor Malaysia. International Journal of Modern Physics Conference Series, 09, 380-389. https://doi.org/10.1142/S2010194512005454

Nur, W., Rachman, H., Abdal, N. M., Abdy, M., & Side, S. (2019). SIR model analysis for transmission of dengue fever disease with climate factors using Lyapunov function. Journal of Physics: Conference Series, 1245(1), 012048. https://doi.org/10.1088/1742-6596/1245/1/012048

Nurhaeda, S., Anas, M., & Side, S. (2021). Analysis and simulation of mathematical model for typhus disease in Makassar. Journal of Physics: Conference Series, 1918(4), 042025. https://doi.org/10.1088/1742-6596/1918/4/042025

Rahmawati, I. (2022). Faktor-faktor yang mempengaruhi terjadinya ulkus kaki diabetik pada pasien diabetes mellitus tipe 2. Jurnal Keperawatan dan Kesehatan Masyarakat Cendekia Utama, 11(2), 117.

Rangkuti, Y. M., Side, S., & Noorani, M. S. M. (n.d.). Numerical analytic solution of SIR model of dengue fever disease in South Sulawesi using homotopy perturbation method and variational iteration method. Journal Name. Retrieved from [URL]

Sanusi, W., Pratama, M. I., Rifandi, M., Sidjara, S., Irwan, & Side, S. (2021). Numerical solution of SIRS model for dengue fever transmission in Makassar city with Runge-Kutta method. Journal of Physics: Conference Series, 1752(1), 012004. https://doi.org/10.1088/1742-6596/1752/1/012004

Side, S., & Noorani, S. (2013). A SIR model for spread of dengue fever disease (simulation for South Sulawesi, Indonesia and Selangor, Malaysia). Journal Name, 9(2), 10.

Side, S., Abdy, M., Arwadi, F., & Sanusi, W. (2021). SEIRI model analysis using the mathematical graph as a solution for hepatitis B disease in Makassar. Journal of Physics: Conference Series, 1899(1), 012091. https://doi.org/10.1088/1742-6596/1899/1/012091

Side, S., Sanusi, W., Aidid, M. K., & Sidjara, S. (2016). Global stability of SIR and SEIR model for tuberculosis disease transmission with Lyapunov function method. Asian Journal of Applied Sciences, 9(3), 87-96. https://doi.org/10.3923/ajaps.2016.87.96

Singhal, T. (2020). A review of Coronavirus Disease-2019 (COVID-19). Indian Journal of Pediatrics, 87(4), 281-286. https://doi.org/10.1007/s12098-020-03263-6

Soewono, E., & Supriatna, A. K. (n.d.). A two-dimensional model for the transmission of dengue fever disease. Journal Name. Retrieved from [URL]

Ulfa, Z. D., Mikdar, U. Z., Cukei, C., & Bernisa, B. (2022). Perilaku hidup bersih dan sehat pada anak-anak di daerah aliran sungai dan gambut Palangka Raya. Jurnal Kesehatan Masyarakat Cendekia Utama, 9(2), 237.

Yang, C., Wang, J., & Department of Mathematics, University of Tennessee at Chattanooga. (2020). A mathematical model for the novel coronavirus epidemic in Wuhan, China. Mathematical Biosciences and Engineering, 17(3), 2708-2724. https://doi.org/10.3934/mbe.2020148

Downloads

Published

2024-12-23

How to Cite

Muhammad Abdy, Muhammad Isbar Pratama, Syafruddin Side, Minggi, I., & Yusuf S.A.P., A. M. R. (2024). Exploring The Future of Health Through The SELR Mathematical Model with Time Delay on The Risk of Diabetes Among Mathematics Students of FMIPA UNM Due to Unhealthy Lifestyles. Proximal: Jurnal Penelitian Matematika Dan Pendidikan Matematika, 8(1), 28–42. https://doi.org/10.30605/proximal.v8i1.4513